Задачи, обучающие координатному методу

Выделенные умения являются основой при решении и более сложных задач.

Задача №3. В трапеции меньшая диагональ перпендикулярна основаниям. Найти большую диагональ, если сумма противоположных углов равна , а основания равны а и b.

Направим оси координат по меньшей диагонали и одному из оснований (рис. 3).

(умение оптимально выбирать систему координат).

Тогда точка А имеет координаты (0,0), точка В - (а,0), точка С - (0,c), точка D - (b,c).

(умение находить координаты заданных точек)

Пусть и острые углы в трапеции АВСD, тогда их сумма равна . Для вычисления длины большей диагонали BD надо найти значение с. Его можно вычислить 2 способами. Первый - из прямоугольного треугольника АВС по формуле находим . Второй способ из прямоугольного треугольника ACD: . Отсюда получили, что

(1)

Из равенства (1) находим отношение : оно равно -, так как . Выразим . Он равен , исходя из этого, пользуясь зависимостью (1), получаем .

(умение выразить недостающие координаты через уже известные величины)

Далее воспользовавшись координатной формулой расстояния между двумя точками, найдем длину BD.

(умение вычислять расстояние между точками, заданными координатами)

Она равна .

Итак, компонентами умения применять координатный метод в конкретных ситуациях являются следующие умения:

переводить геометрический язык на аналитический для одного типа задач и с аналитического на геометрический для другого;

стоить точку по заданным координатам;

находить координаты заданных точек;

вычислять расстояние между точками, заданными координатами;

оптимально выбирать систему координат;

составлять уравнения заданных фигур;

видеть за уравнением конкретный геометрический образ;

выполнять преобразование алгебраических соотношений.

Данные умения можно отработать на примере следующих задач, формирующих координатный метод:

задачи на построение точки по ее координатам;

задачи на нахождение координат заданных точек;

задачи на вычисление расстояния между точками, заданными координатами;

задачи на оптимальный выбор системы координат;

задачи на составление уравнения фигуры по ее характеристическому свойству;

задачи на определение фигуры по ее уравнению;

задачи на преобразование алгебраических равенств;

Приведем примеры таких задач.

I. Построение точек на плоскости.

С координатной прямой, а затем и с координатной плоскостью учащиеся знакомятся в 5-6 классах при изучении математического материала. При этом удобно использовать мультимедийные презентации, которые позволяют в динамике излагать необходимый материал, использовать всевозможные иллюстрации и звуковые эффекты, тем самым, заинтересовывая учащихся и являясь хорошим наглядным средством. Одним из примеров является презентация «Метод координат», опирающаяся на учебник [7]. (см. приложение 1). Приведем несколько примеров задач, которые можно использовать при изучении координатной плоскости. Эти задачи могут быть использованы:

Перейти на страницу: 1 2 3 4

[an error occurred while processing the directive]